Symposium 1: Contributions of Innate Constraints and Experience to the Development of Visual Cortex: Evidence from Infants and Blind adults

The building blocks of vision: Cortical and subcortical organization of the newborn visual system

Vladislav Ayzenberg¹ and Michael Arcaro¹

¹Department of Psychology, University of Pennsylvania, PA, USA

Category selectivity in human infant ventral temporal cortex

Heather L. Kosakowski¹, Michael A. Cohen^{2,3}, Lyneé Herrera⁴, Boris Keil⁵, Isabel Nichoson⁶, Atsuhi Takahashi², Nancy Kanwisher², and Rebecca Saxe²

¹Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, USA

²Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

³Department of Psychology and Program in Neuroscience, Amherst College, Amherst, MA, USA

⁴Psychology Department, University of Denver, Denver, CO, USA

⁵Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering,

Mittelhessen University of Applied Science, Giessen, Germany

⁶Tulane Brain Institute, Tulane University, New Orleans, LA, USA

In people born blind, lateral vOTC specializes for language, not voices

Elizabeth J. Saccone¹, Akshi¹, and Marina Bedny¹

¹Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA

From waveform to meaning: Development and reorganization of the dynamics of sound representation in the human brain

Olivier Collignon^{1,2}

¹Institute for research in Psychology (IPSY) & Neuroscience (IoNS), Louvain Bionics, University of Louvain (UCLouvain), Louvain, Belgium

²HES-SO Valais-Wallis, School of Health Sciences; The Sense Innovation and Research Center, Lausanne and Sion, Switzerland

Symposium 2: From Lipreading to Listening: How Visual Cues Shape Auditory Speech Processing

Visual speech qua speech? Unraveling the hierarchy of audiovisual speech Aaron R. Nidiffer¹ and Edmund C. Lalor¹ ¹Department of Neuroscience, University of Rochester, Rochester, NY, USA

Eye-movements track unheard acoustic speech during silent visual speech

Kaja Rosa Benz¹, Anne Hauswald¹, Nina Suess¹, Quirin Gehmacher¹, Patrick Reisinger¹, Fabian Schmidt¹, Thomas Hartmann¹, and Nathan Weisz^{1,2}

¹Paris-Lodron-University of Salzburg, Department of Psychology, Centre for Cognitive Neuroscience, Salzburg, Austria

²Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria

Auditory cortex encodes lipreading information through spatially distributed activity David Brang¹, Ganesan Karthik¹, Cody Zhewei Cao¹, Michael I. Demidenko¹, Andrew Jahn¹, William C. Stacey², and Vibhangini S. Wasade^{3,4} ¹Department of Psychology, University of Michigan, Ann Arbor, MI, USA ²Department of Neurology, University of Michigan, Ann Arbor, MI, USA

³Henry Ford Hospital, Detroit, MI, USA

⁴Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA

Visual speech differently restores temporal and spectral speech information in the auditory cortex

Cody Zhewei Cao¹, G Karthik¹, Areti Majumbar¹, Andrew Jahn¹, and David Brang¹ ¹Department of Psychology, University of Michigan, Ann Arbor, MI, USA

Suppressed multisensory activity in posterior superior temporal gyrus is related to increased visual benefit during audiovisual speech perception

J.F. Magnotti¹, I. Yu¹, A. Lado¹, Y. Zhang¹, and M.S. Beauchamp¹ ¹Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA

Symposium 3: From Passive to Active: the Influence of Active Perception on Multisensory Processing

Sensory augmentation in an active multisensory environment James Negen¹, Heather Slater², and Marko Nardini² ¹Liverpool John Moores University, Liverpool, England ²Durham University, Durham, England

Investigating the link between head and trunk movements and spatial orientation abilities in VR Davide Esposite¹ and Monica Gori¹

Davide Esposito¹ and Monica Gori¹ ¹Istituto Italiano di Tecnologia, Genoa, Italy

Walking entrains saccade behaviour and modulates audiovisual synchrony perception David Alais¹, Gabriel Clouston¹, and Matthew Davidson¹ ¹The University of Sydney, Camperdown, Australia

The effect of running on visual and auditory time perception

Roberto Arrighi¹, Irene Petrizzo¹, Eleonora Chelli¹, Tommaso Bartoloni¹, and Giovanni Anobile¹ ¹University of Florence, Florence, Italy

Continuous tracking of audiovisual stimuli Alessia Tonelli^{1,2}, David Burr^{1,3}, and David Alais¹ ¹The University of Sydney, Camperdown, Australia ²Istitutito Italiano di Tecnologia, Genoa, Italy ³University of Florence, Florence, Italy

Contrast sensitivity depends on locomotor phase

Brian Székely¹ and Paul Macneilage¹ ¹University of Nevada, Reno, Reno, NV, USA

Symposium 4: Unravelling the Neural Mechanisms of Multisensory Self-Motion Processing: From Primate Models to Clinical Applications

Spatial and temporal congruency of vestibular and visual signals in nonhuman primates for self-motion perception Yong Gu¹ ¹Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China

Area V6 in human and non-human primates: a critical hub in the dorsal visual stream for visual motion processing

Annalisa Bosco¹, Michela Gamberini¹, Claudio Galletti¹, and Patrizia Fattori¹ ¹University of Bologna, Bologna, Italy

How crucial is V6 for self-motion cortical processing in human and non-human primates? Sarah Marchand¹, Vanessa De Castro¹, Elisabeth Excoffier¹, Maxime Rosito¹, Nathalie Vayssiere¹, Jean-Baptiste Durand¹, and Alexandra Severac Cauquil¹ ¹Centre de Recherche Cerveau Cognition (CerCo), UMR 5549, CNRS - Université Toulouse III-Paul Sabatier, Toulouse, France

Multisensory integration in egomotion-related visual areas Sabrina Pitzalis¹

¹University of Rome "Foro Italico", Rome, Italy

The anterior-medial vestibular-visual network in humans Mark W. Greenlee¹, Markus Becker¹, Sebastian M. Frank¹, and Anton L. Beer¹ ¹University of Regensburg, Regensburg, Germany

Egocentric navigation network plasticity: Training extends functional connectivity of V6 to frontal areas of congenitally blind people

Elena Aggius-Vella¹, Daniel-Robert Chebat², Shachar Maidenbaum^{3,4}, and Amir Amedi¹

¹The Baruch Ivcher Institute for Brain, Cognition & Technology, Reichman University, Herzliya, Israel ²Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israel

³Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel

⁴Zlotowski Center for Neuroscience, Ben Gurion University, Beersheba, Israel

Symposium 5 (invited): Processes of Multisensory Learning

How can the tendency to integrate the senses be modified? Ladan Shams¹ ¹University of California, Los Angeles, Los Angeles, CA, USA

Learning to combine cues during childhood development and beyond Marko Nardini¹ and Meike Scheller¹ ¹Durham University, Durham, England

Perceptual learning and adaptation with Bayesian mixture models Ulrik Beierholm¹ ¹Durham University, Durham, England

How adaptable are object categories formed from multisensory inputs?

Fiona Newell^{1,2}, Alan O' Dowd^{1,2}, and Rebecca Hirst^{1,2} ¹Trinity College, Dublin, Ireland ²New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Multisensory Facilitation of Perceptual Learning and Working Memory Training Aaron Seitz¹

¹Northeastern University, Boston, MA, USA

Symposium 6: Multisensory Development in Humans from Birth through Young Adulthood

Immersive Environments for Studying Multisensory Development Mark T. Wallace¹ ¹Vanderbilt University, Nashville, TN, USA

Tools to develop, control, and analyze dynamic, immersive multisensory experiments Marcus R. Watson¹

¹York University, Toronto, Ontario, Canada

Generative AI and cognitive science: Unifying sensory modalities in latent spaces

David Tovar¹ ¹Vanderbilt University, Nashville, TN, USA

Haptic development and multisensory processing: Basic science and technology Monica Gori¹

¹Italian Institute of Technology, Genoa, Italy

Human movement biomechanics: How can we get inspiration from other disciplines? Julien Favre¹

¹Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Vaud, Switzerland

Symposium 7 (invited): Multisensory Processing in Mouse and Insect Models

Multisensory enhancement of prey pursuit behavior in mice Jennifer Hoy¹ ¹University of Nevada, Reno, Reno, NV, USA

Topographic alignment of auditory and visual receptive fields in the mouse superior colliculius David Feldheim¹ ¹University of California, Santa Cruz, Santa Cruz, CA, USA

A framework for modeling active multisensory integration

Ben Cellini¹, Burak Boyacioglu¹, S. David Stupski¹, and Floris van Breugel¹ ¹University of Nevada, Reno, Reno, NV, USA

Visual and acoustic integration in mosquito swarms: Strategy for finding mates while avoiding collisions Saumya Gupta¹ and Jeffrey A. Riffell¹ University of Washington, Seattle, WA, USA

Symposium 8: Shifting Sensory Reliance: Adaptive Strategies in Vision Impairment and Blindness

Does losing stereoscopic vision matter? Age-related differences in cue combination compensation Adrien Chopin^{1,2}, Diana Rdeini,^{1,3}, Catherine Agathos², Chiara Ciucci,^{1,4} Yuling Wang¹, Valérie Parmentier⁵, Denis Sheynikhovich¹, and Angelo Arleo^{1,5} ¹Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France ²The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA

³Hôpital National de la Vision, Université Paris Cité, Paris, France

⁴School of Advanced Study Sant'Anna, Pisa University, Pisa, Italy ⁵Center Innovation & Technologies Europe, Essilor International SAS (EssilorLuxottica), Charenton-le-Pont, France

Sensory reweighting in central visual field loss

Catherine Agathos¹, Anca Velisar¹, and Natela Shanidze¹ ¹The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA

Improving visual rehabilitation strategies in patients with macular degeneration by combining perceptual learning with tRNS

Giulio Contemori^{1,2}, Marcello Maniglia³, Jade Guénot⁴, Vincent Soler^{2,5}, Marta Cherubini^{6,7}, Benoit R. Cottereau^{2,6}, and Yves Trotter^{2,6} ¹Department of General Psychology, University of Padova, Padua, Italy ²Centre de Recherche Cerveau et Cognition, Université de Toulouse, France ³Department of Psychology, University of California, Riverside, Riverside, CA, USA ⁴The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA ⁵Service d'Ophtalmologie Centre Hospitalier Universitaire de Toulouse, Toulouse, France ⁶Centre National de la Recherche Scientifique, Toulouse, France ⁷Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy

Integrating across hands in bimanual braille reading Santani Teng¹

¹The Smith Kettlewell Eye Research Institute, San Francisco, CA, USA

Neural dynamics of human click-based echolocation

Haydée García-Lázaro¹ and Santani Teng¹ ¹The Smith Kettlewell Eye Research Institute, San Francisco, CA, USA